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ABSTRACT 

The Thomson heat is a very small thermoelectric heat effect that appears in a conductor 
that is subjected simultaneously to an electric potential difference and a temperature 
difference. From the Thomson coefficient, which is a property of the material, important 
information can be obtained concerning the electrical properties of conductors and semi-con- 
ductors. In the past, several researchers have tried to measure the effect with varying degrees 
of success. In this paper a method is proposed which should in principle allow the Thomson 
heat to be measured accurately and directly. 

INTRODUCTION 

When a system of conducting or semi-conducting wires is subjected to an 
electric potential difference or a temperature difference or both, several 
thermoelectric effects can appear. The Seebeck effect is well-known: this is 
the name given to a difference in potential between the terminals of a 
combination of wires of two different metals when the contact points of the 
metals are kept at different temperatures (a thermocouple). 

The simplest system in which a thermoelectric effect appears is a wire of a 
single metal subjected to a temperature gradient. The resulting heat flow will 
be accompanied by an electron flow, which will give rise to an electric 
potential difference AV between the terminals of the wire. This electric 
potential difference per unit temperature difference AV/AT is called the 
thermoelectric power of the material. In order to measure the thermoelectric 
power of a metal A one has to connect the end points of the wire A to a 
potentiometer by means of two wires of another metal B (Fig. 1). Because 
the points of contact with the potentiometer have to be at the same 
temperature it is clear that one measures not only AV/AT of metal A but 
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Fig. 1. Scheme of a thermocouple. 

Fig. 2. Principle of the method for measuring the Thomson heat with a differential calorime- 
ter. T, and T, are thermostats, AMB is the nickel wire passing through the tubes. 

also the contribution AV/AT of metal B. The combined system of wires A 
and B is a thermocouple. In tables [l] the thermoelectric power is generally 
given for the thermocouple as a whole and not for the single metals, 
although the obvious advantage of the latter method would be that the 
thermoelectric power of a chosen combination of materials could be esti- 
mated in advance. The problem with determining the (absolute) thermoelec- 
tric power of a single material is evident in the set up illustrated in Fig. 1: 
material B should not contribute to AV. As can be shown by the theory of 
irreversible thermodynamics this is the case when material B is in a super- 
conducting state. An experimental set-up with one of the new high tempera- 
ture (T, = 90 K) superconductors would be the most elegant method to 
obtain the absolute thermoelectric power in this temperature range. For 
higher temperatures however, the only way to determine this physical 
quantity is by measuring in some way the Thomson heat, a small heat effect 
appearing in a single material subjected simultaneously to a temperature 
difference and an electric potential difference. A constant temperature 
difference AT between the end points of a wire will cause a temperature 
gradient and thereby a heat flow at each point of the wire. If one prevents 
the wire from exchanging heat with its surroundings, for instance by keeping 
the surroundings at each point at the same temperature as the wire, a 
stationary state will develop with a constant heat flow. An electric potential 
difference superposed on the temperature gradient in the wire will exert a 
force on the electrons in the metal which transport the thermal energy. As a 
consequence the temperature gradient will be disturbed and thereby the 
stationary state. The wire will then exchange heat with the surroundings in 
order to restore the gradient. This heat effect, which is very small, was 
predicted in 1854 by Thomson and is therefore called the Thomson heat. 
Several researchers have tried to measure the effect with varying degrees of 
success [2-51. This heat depends on the same properties of the material as 
those which are responsible for the thermoelectric power and accordingly 
there is a direct relation between the two effects. The magnitude of the 



Thomson heat is a function of the 
gradient dT/dx, the time t and of the 

by [6-81 
QT = pI(dT/dx)t 
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electric current I, the temperature 
properties of the material; it is given 

In this equation p is the Thomson coefficient, representing the quantity of 
heat which is exchanged with the surroundings when an electric charge of 
1 C is transported over a temperature difference of 1 K. The Thomson 
coefficient is positive when a (positive) electric current flows in the direction 
of increasing temperature and heat is absorbed [8]. 

The relation between the Thomson coefficient and the thermoelectric 
power can be derived from linear irreversible thermodynamics and is given 

by [91 

p=-Td2V 
i i dT2 

From eqn. (2) it follows that 

(2) 

(3) 

Now the thermoelectric power dV/dT is the derivative with respect to 
temperature of an electric potential. For a metal of constant composition the 
electric potential is linearly dependent on the electrochemical potential. 
Therefore dV/dT is an entropy and according to the Third Law it vanishes 
at T = 0. So eqn. (3) reduces to 

(St_ T= /,Tf dT (4 

From this equation it follows that, when the Thomson coefficient p for a 
metal is measured as a function of T, the absolute thermoelectric power of 
the metal can be determined. 

A more pronounced heat effect connected with the conduction of an 
electric current through a wire is the Joule heat. Whereas the Thomson heat 
only appears in the presence of a temperature gradient and reverses its sign 
when the direction of the current is reversed, the Joule heat is independent 
of a temperature gradient and is always positive. It is a typical irreversible 
process. Because of this the Thomson heat will always be accompanied by 
the Joule heat, which is proportional to the square of the current 

Q, = G = R12t (5) 

In this equation u is the conductivity and R is the resistance of the metal. 
Because the Thomson coefficient p in eqn. (1) is very small, one has to 

apply a strong electric current I to obtain a measurable Thomson heat. 
However, this will increase the Joule heat quadratically, which will then 
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hinder the measurement of the Thomson heat. The principle of the DSC 
technique is that it allows the effect of the Joule heat to be eliminated by 
using the sign reversion of the Thomson heat, as will be explained in the 
next section. Nevertheless it is important to reduce the Joule heat as much as 
possible; this can be done by making the conducti~ty high. The only way to 
achieve this is to choose a wire with the largest possible diameter. This in 
turn leads to problems with limitations of the current and makes special 
precautions necessary. 

EXPERIMENTAL 

In order to measure the small Thomson heat in the presence of the 
(generally) larger Joule heat directly one needs a calorimeter that is sensitive 
enough to measure heat effects along (part of) a wire. An instrument which 
seems to meet these demands is a differential calorimeter of the Calvet type 
as built by Setaram. It consists of two tubes of sintered silicon each being 
145 mm long and having a diameter of 8 mm. Both tubes are enclosed in a 
thermostatically-programmed block that can also serve as a constant- 
temperature heat sink. Around the middle part of each tube sensors are built 
in over a length of 15 mm in order to measure the heat flow through the wall 
of the tube towards the block. The signal given by the calorimeter as a whole 
is the difference between the heat flows from the two tubes. 

If a homogeneous wire of a conducting material is led through the tubes 
in the way shown in Fig. 2 and an electric current is passed through it, the 
Joule heat that is developed in the two tubes will be equal. Since a 
differential calorimeter registers the difference between the two heat effects, 
there will in principle be no signal. This can easily be verified. In practice, 
because of inhomogeneities in the wire and geometrical factors, the signal 
will generally not be exactly zero; a correction for this deviation will be 
treated in the section on the choice of materials. If a temperature gradient is 
now imposed on the wires by cooling down the wire on one side of the 
calorimeter tubes and heating it on the other side a Thomson heat will arise 
in both wires; its sign will depend on the direction of the electric current 
with respect to heat flow. Therefore the Thomson heat will have a different 
sign in each tube. The heat production per unit time, the power P, in the 
wires can therefore be given by 

P = Q,/t + QT/t = RI2 - ~1 AT (6) 
In this equation AT is the temperature difference over the length of wire Ax 
that is situated in the calorimetric fluxmeter zone of the tube. 

As the DSC signal is the difference AP between the heat production in 
the two wires we find 

AP = ARID - (A~xj.h)i (7) 
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In the ideal case of a homogeneous and strain-free wire the Joule heat is 
cancelled out and only (twice) the Thomson heat is measured. In practice 
however a small Joule heat effect will be detected because of imperfections; 
this means that AR has a small value. The best way to determine the 
coefficients AR and ATQ of eqn. 7 is to make a second order polynomial 
fit of the total heat effect AP as a function of the current at constant AT. 
The results of this procedure are given in the next two sections. 

CHOICE OF MATERIALS 

The Thomson coefficient is a property of the material and it has different 
values for different metals; so has the Thomson heat. To test the method we 
preferred to measure under favourable circumstances, which means that 

!2;2iQT + Q,> should b e as large as possible. This leads to the following 

Q* ATpI 

QT+Q, = RI2 + ATpI 

ATpI = 
(L/AU)12 * AT/.&1 = (I/AW,~)(l/op) * 1 

(8) 

where A is the surface of the cross-section of the wire, L the length of the 

Fig. 3. The calculated ratio PT/Ptotal = QT/(QT + Q,) as a function of the total heat 
production Ptotal for wires with a diameter of 1 mm. 

Fig. 4. The same plot as Fig. 3 for wires with a diameter of 5 mm. 
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part of the wire in the sensitive zone of the tube, and u the specific 
conductivity of the metal. 

For the final ratio shown in eqn. (8) to be as large as possible, the first 
term in the denominator should be as small as possible. It consists of three 
factors, each depending on different properties of the experimental set up: 
I/AT contains variables in the experiment, L/A contains constants that are 
fixed by the geometry of the set up, and a~ contains only material-depen- 
dent constants. 

Obviously the choice of the factor up is important; it can be estimated 
from data in the literature [lO,ll]. In Figs. 3 and 4 the value of the ratio 

Pr/Ptotal= Q4Q-r + Q,> is is iven as a function of the total power PLotal = 
P, + PJ for a number of metals and for chosen values of AT and A. The 
graphs are given for small values of Ptotal; the actual measuring range is to 
the right of the pictures. The value of L follows from the geometry of the 
calorimeter and is taken to be 15 mm, following the DSC manual. From 
these graphs it can be seen that nickel has the highest ratio and for this 
reason was chosen for the experiment. 

RESULTS 

Testing the method 

The first measurements were done to test for imperfections in the set up, 
particularly for inhomogeneities in the wire and asymmetry in the detectors. 
An experiment was carried out in which the difference in the heat produced 
in the two legs of a nickel wire (Fig. 2) was measured as a function of the 
current at zero temperature gradient. After interchanging the wires with 
respect to the tubes the experiment was repeated. The plot of the two 
functions is given in Figs. 5 and 6 respectively. The coefficients of a second 
order polynomial fit are given in Table 1. 

Fig. 5. The power difference A P as a function of the electric current I at AT = 0. 

Fig. 6. The same plot as Fig. 5 but with the wires interchanged. 



335 

TABLE 1 

Coefficients of the power difference in the case of zero temperature gradient 
AZ’(Z) = C, + CtZ + CzZ*. AP in PW; Z in amps 

CO 

(PY 
C, 
(PV 

C-2 
(cLfi2) 

Normal -6+21 -26+40 - 99.9 + 2.0 
Reversed 4+ 9 -19*11 24 +3 

In the case of an ideal wire (perfectly homogeneous, no strain) and perfect 
detectors no heat effect should be found [AP( I) = 01. In practice the 
deviation from zero will be due partly to the properties of the wire and 
partly to imperfections in the detectors. In view of the fact that with an ideal 
set of tubes, interchanging the (imperfect) wires will result in a calorimeter 
signal with the opposite sign, whereas with a perfect wire, interchanging will 
make no difference in the signal, it can be deduced that 62 PL? of AR in eqn. 
7 is caused by the wires and 38 @ of AR by the detectors. From Table 1 it 
follows that the effect is almost exclusively determined by the term with C,, 
as it should be; the contribution of the other two terms is negligibly small. 
The effect is about 1% of the total heat production, as can be seen from 
Table 2; no correction will be made for this effect at this stage of the 
experiment. In another experiment the heat production in the two legs of the 
wire was measured separately by applying a current between the middle M 
of the wire (Fig. 2) and end A and then between M and B. The results are 
given in Table 2. 

According to these measurements the resistance difference AR = 430 + 170 
pQ2, which is four times the value found in the first experiment. The 
probable reason for this is that small fluctuations in the current occur during 
the experiment. In difference measurements the effects of these fluctuations 
cancel each other out whereas in the separate measurements they do not. 
The main reason for doing separate measurements was to estimate the 
length of the sensitive area in the calorimeter tubes. From the coefficient C,, 
which represents the detected resistance of the part of the wire that is in the 
sensitive area, one can estimate the length of the sensitive area if the 

TABLE 2 

Coefficient of the power developed in each leg of the wire separately. P(Z) = Co + C,Z + C,Z*. 
P in mW; Z in amps 

A 0.0 ,0.4 -0.3 +0.5 4.OO-tO.16 
B - 0.21+ 0.14 0.94 k 0.24 - 4.43 + 0.07 
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TABLE 3 

Coefficients of the Thomson heat measurements. AP( Z) = C, + C,I + C,Z*. AP in r;W; I 
in amps 

(TK) 
Co Cl 
(FW) (r.Lv) &) 

330 15*17 244_+5 - 97.4 f 2.5 
347 2Ok30 361+4 - 97.1 rt 2.8 

resistance per unit length of the wire is known. Since the nickel wire had a 
resistance of 165.2 + 0.7 mCJ m-l the effective length of the detector was 
calculated to be about 25 mm. This is 10 mm more than the value given in 
the manual of the DSC. 

The length of the detector zone is an important quantity because it 
determines the value of the temperature difference AT in eqn. (6), if a 
specific temperature gradient is imposed. 

Measurement of the Thomson heat 

To measure the Thomson effect a temperature gradient was created by 
raising the temperature of one of the thermostats shown in Fig. 2. The 
gradient was simply taken to be the temperature difference between the two 
thermostats divided by the length of the wire between them. 

The temperature difference AT in eqn. (7) is the gradient multiplied by 
the effective length of the detector. We determined the Thomson coefficient 
at two temperatures: 330 and 347 K. 

Again the measurements were fitted to a second order polynomial: the 
results are given in Table 3 and Fig. 7. 

Fig. 7. The power difference AP for a nickel wire as a function of the current Z at three 
different values of AT. At zero temperature gradient (AT = 0) no Thomson heat appears and 
the curve is symmetrical around Z = 0. At AT # 0 the asymmetric Thomson heat causes a 
shift of the curve. 
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TABLE 4 

Parameters of the Thomson heat measurements 

TK) 

330 
347 

Gradient CI AR 
(K m-‘) (pv K-‘) (@) 

410+50 -11+1.5 -97.4k2.5 
640 + 50 -12+1.5 - 97.1+ 2.8 

TABLE 5 

Literature values for the Thomson coefficient of nickel and the results of this work 

Authors Ref. T (K) F (pv K-‘) 

Maxwell et al 3 283 -58.Ok 1.2 
293 -4o.o* 2.0 

Maxwell et al. 3 314.2 
314.2 

Maxwell et al. 3 313 
315.2 

Tregouet 5 330 
and Goureaux 347 

Borelius et al. 12 304 

This work 330 
347 

-34 f 4 
-31 *11 

-27.6-t 1.6 
-26.2+ 1.6 

- 20.5 
-21.5 

- 17.14 

-11 f 1.5 
-12 + 1.5 

The magnitude of the Thomson coefficient can be calculated from the 
values in Table 3; the values obtained are given in Table 4, together with 
other relevant parameters. 

DISCUSSION 

In the experiment it has been shown that in principle the method 
described is suitable for measuring the very small Thomson heat directly. 
Although the appearance of the larger Joule heat cannot be prevented, the 
effect of it can be eliminated by using the fact that in the calorimetric 
difference technique two equal quantities cancel each other out. An ad- 
ditional advantage of this method is that possible imperfections in the 
material come to light in a direct way, as has been demonstrated. 

The main problem is how to determine the effective length of the sensitive 
zone of the calorimetric tubes; from this length the magnitude of the 
temperature gradient is derived. This gradient is a factor in the expression 
for the Thomson heat (eqn. 1). 
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A separate experiment is in preparation in which the tubes of the Setaram 
calorimeter will be explored with a small heat probe in order to find the 
sensitivity as a function of the position. To improve the results a better 
representation is needed for the temperature as a function of position. It is 
expected that these two improvements will produce a more reliable value for 
the temperature gradient. 

We are also planning the construction of a special calorimeter for measur- 
ing the Thomson heat. In our plans attention will be given to the geometry 
of the sensitive zone as well as to the overall sensitivity. 
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